Effectiveness of Face Mask or Respirator Use in Indoor Public Settings for Prevention of SARS-CoV-2 Infection

Effectiveness of Face Mask or Respirator Use in Indoor Public Settings for Prevention of SARS-CoV-2 Infection

The use of face masks or respirators (N95/KN95) is recommended to reduce transmission of SARS-CoV-2, the virus that causes COVID-19 (1).
Well-fitting face masks and respirators effectively filter virus-sized particles in laboratory conditions (2,3), though few studies have assessed their real-world effectiveness in preventing acquisition of SARS-CoV-2 infection (4).
A test-negative design case-control study enrolled randomly selected California residents who had received a test result for SARS-CoV-2 during February 18–December 1, 2021.
Face mask or respirator use was assessed among 652 case-participants (residents who had received positive test results for SARS-CoV-2) and 1,176 matched control-participants (residents who had received negative test results for SARS-CoV-2) who self-reported being in indoor public settings during the 2 weeks preceding testing and who reported no known contact with anyone with confirmed or suspected SARS-CoV-2 infection during this time.
Always using a face mask or respirator in indoor public settings was associated with lower adjusted odds of a positive test result compared with never wearing a face mask or respirator in these settings (adjusted odds ratio [aOR] = 0.44; 95% CI = 0.24–0.82).
Among 534 participants who specified the type of face covering they typically used, wearing N95/KN95 respirators (aOR = 0.17; 95% CI = 0.05–0.64) or surgical masks (aOR = 0.34; 95% CI = 0.13–0.90) was associated with significantly lower adjusted odds of a positive test result compared with not wearing any face mask or respirator.
These findings reinforce that in addition to being up to date with recommended COVID-19 vaccinations, consistently wearing a face mask or respirator in indoor public settings reduces the risk of acquiring SARS-CoV-2 infection. Using a respirator offers the highest level of personal protection against acquiring infection, although it is most important to wear a mask or respirator that is comfortable and can be used consistently.
This study used a test-negative case-control design, enrolling persons who received a positive (case-participants) or negative (control-participants) SARS-CoV-2 test result, from among all California residents, without age restriction, who received a molecular test result for SARS-CoV-2 during February 18–December 1, 2021 (5).
Potential case-participants were randomly selected from among all persons who received a positive test result during the previous 48 hours and were invited to participate by telephone.
For each enrolled case-participant, interviewers enrolled one control-participant matched by age group, sex, and state region; thus, interviewers were not blinded to participants’ SARS-CoV-2 infection status.
Participants who self-reported having received a previous positive test result (molecular, antigen, or serologic) or clinical diagnosis of COVID-19 were not eligible to participate. During February 18–December 1, 2021, a total of 1,528 case-participants and 1,511 control-participants were enrolled in the study among attempted calls placed to 11,387 case- and 17,051 control-participants (response rates were 13.4% and 8.9%, respectively).
After obtaining informed consent from participants, interviewers administered a telephone questionnaire in English or Spanish.
All participants were asked to indicate whether they had been in indoor public settings (e.g., retail stores, restaurants or bars, recreational facilities, public transit, salons, movie theaters, worship services, schools, or museums) in the 14 days preceding testing and whether they wore a face mask or respirator all, most, some, or none of the time in those settings.
Interviewers recorded participants’ responses regarding COVID-19 vaccination status, sociodemographic characteristics, and history of exposure to anyone known or suspected to have been infected with SARS-CoV-2 in the 14 days before participants were tested.
Participants enrolled during September 9–December 1, 2021, (534) were also asked to indicate the type of face covering typically worn (N95/KN95 respirator, surgical mask, or cloth mask) in indoor public settings.
The primary analysis compared self-reported face mask or respirator use in indoor public settings 14 days before SARS-CoV-2 testing between case- (652) and control- (1,176) participants. Secondary analyses accounted for consistency of face mask or respirator use all, most, some, or none of the time.
To understand the effects of masking on community transmission, the analysis included the subset of participants who, during the 14 days before they were tested, reported visiting indoor public settings and who reported no known exposure to persons known or suspected to have been infected with SARS-CoV-2.
An additional analysis assessed differences in protection against SARS-CoV-2 infection by the type of face covering worn, and was limited to a subset of participants enrolled after September 9, 2021, who were asked to indicate the type of face covering they typically wore; participants who indicated typically wearing multiple different mask types were categorized as wearing either a cloth mask (if they reported cloth mask use) or a surgical mask (if they did not report cloth mask use).
Adjusted odds ratios comparing history of mask-wearing among case- and control-participants were calculated using conditional logistic regression.
Match strata were defined by participants’ week of SARS-CoV-2 testing and by county-level SARS-CoV-2 risk tiers as defined under California’s Blueprint for a Safer Economy reopening scheme.
Adjusted models accounted for self-reported COVID-19 vaccination status (fully vaccinated with ≥2 doses of BNT162b2 [Pfizer-BioNTech] or mRNA-1273 [Moderna] or 1 dose of Ad.26.COV2.S [Janssen (Johnson & Johnson)] vaccine >14 days before testing versus zero doses), household income, race/ethnicity, age, sex, state region, and county population density.
Statistical significance was defined by two-sided Wald tests with p-values <0.05. All analyses were conducted using R software (version 3.6.1; R Foundation).
This activity was approved as public health surveillance by the State of California Health and Human Services Agency Committee for the Protection of Human Subjects.
A total of 652 case- and 1,176 control-participants were enrolled in the study equally across nine multi-county regions in California (Table 1). The majority of participants (43.2%) identified as non-Hispanic White; 28.2% of participants identified as Hispanic (any race).
A higher proportion of case-participants (78.4%) was unvaccinated compared with control-participants (57.5%). Overall, 44 (6.7%) case-participants and 42 (3.6%) control-participants reported never wearing a face mask or respirator in indoor public settings (Table 2), and 393 (60.3%) case-participants and 819 (69.6%) control-participants reported always wearing a face mask or respirator in indoor public settings.
Any face mask or respirator use in indoor public settings was associated with significantly lower odds of a positive test result compared with never using a face mask or respirator (aOR = 0.51; 95% CI = 0.29­–0.93).
Always using a face mask or respirator in indoor public settings was associated with lower adjusted odds of a positive test result compared with never wearing a face mask or respirator (aOR = 0.44; 95% CI = 0.24–0.82); however, adjusted odds of a positive test result suggested stepwise reductions in protection among participants who reported wearing a face mask or respirator most of the time (aOR = 0.55; 95% CI = 0.29–1.05) or some of the time (aOR = 0.71; 95% CI = 0.35–1.46) compared with participants who reported never wearing a face mask or respirator.
Wearing an N95/KN95 respirator (aOR = 0.17; 95% CI = 0.05–0.64) or wearing a surgical mask (aOR = 0.34; 95% CI = 0.13­–0.90) was associated with lower adjusted odds of a positive test result compared with not wearing a mask (Table 3). Wearing a cloth mask (aOR = 0.44; 95% CI = 0.17–1.17) was associated with lower adjusted odds of a positive test compared with never wearing a face covering but was not statistically significant.
Share on Facebook «||» Share on Twitter «||» Share on Reddit «||» Share on LinkedIn

Read Related News On TDPel Media

Advertisement
Advertisement: Download Vital Signs App (VS App)